KIT | KIT-Bibliothek | Impressum | Datenschutz

Homogenized lattice Boltzmann methods for fluid flow through porous media – Part I: Kinetic model derivation

Simonis, Stephan ORCID iD icon 1; Hafen, Nicolas ORCID iD icon 2; Jeßberger, Julius 3; Dapelo, Davide; Thäter, Gudrun 1; Krause, Mathias J. 3
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)
2 Institut für Mechanische Verfahrenstechnik und Mechanik (MVM), Karlsruher Institut für Technologie (KIT)
3 Karlsruher Institut für Technologie (KIT)

Abstract:

In this series of studies, we establish homogenized lattice Boltzmann methods (HLBM) for simulating fluid flow through porous media. Our contributions in part I are twofold. First, we assemble the targeted partial differential equation system by formally unifying the governing equations for nonstationary fluid flow in porous media. A matrix of regularly arranged, equally sized obstacles is placed into the fluid domain to model fluid flow through porous structures governed by the incompressible nonstationary Navier–Stokes equations (NSE). Depending on the ratio of geometric parameters in the solid matrix arrangement, several homogenized equations are obtained. We review existing methods for homogenizing the nonstationary NSE for specific porosities and discuss the applicability of the resulting model equations. Consequently, the homogenized NSE are expressed as targeted partial differential equations that jointly incorporate the derived aspects. Second, we propose a kinetic model, the homogenized Bhatnagar–Gross–Krook Boltzmann equation, which approximates the homogenized nonstationary NSE. We formally prove that the zeroth and first order moments of the kinetic model provide solutions to the mass and momentum balance variables of the macroscopic model up to specific orders in the scaling parameter. ... mehr

Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Institut für Mechanische Verfahrenstechnik und Mechanik (MVM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2025
Sprache Englisch
Identifikator ISSN: 2822-7840, 2804-7214
KITopen-ID: 1000180578
Erschienen in ESAIM: Mathematical Modelling and Numerical Analysis
Verlag EDP Sciences
Band 59
Heft 2
Seiten 789–813
Vorab online veröffentlicht am 24.03.2025
Nachgewiesen in Dimensions
Scopus
Web of Science
OpenAlex

Verlagsausgabe §
DOI: 10.5445/IR/1000180578
Veröffentlicht am 31.03.2025
Seitenaufrufe: 14
seit 31.03.2025
Downloads: 15
seit 02.04.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page