KIT | KIT-Bibliothek | Impressum | Datenschutz

A Full-Body IMU-Based Motion Dataset of Daily Tasks by Older and Younger Adults

Pogrzeba, Loreen 1; Muschter, Evelyn 1; Hanisch, Simon 1,2; Wardhani, Veronica Y. P. 1; Strufe, Thorsten ORCID iD icon 1,2; Fitzek, Frank H. P. 1; Li, Shu-Chen 1
1 Technische Universität Dresden (TU Dresden)
2 Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This dataset (named CeTI-Age-Kinematics) fills the gap in existing motion capture (MoCap) data by recording kinematics of full-body movements during daily tasks in an age-comparative sample with 32 participants in two groups: older adults (66–75 years) and younger adults (19–28 years). The data were recorded using sensor suits and gloves with inertial measurement units (IMUs). The dataset features 30 common elemental daily tasks that are grouped into nine categories, including simulated interactions with imaginary objects. Kinematic data were recorded under well-controlled conditions, with repetitions and well-documented task procedures and variations. It also entails anthropometric body measurements and spatial measurements of the experimental setups to enhance the interpretation of IMU MoCap data in relation to body characteristics and situational surroundings. This dataset can contribute to advancing machine learning, virtual reality, and medical applications by enabling detailed analyses and modeling of naturalistic motions and their variability across a wide age range. Such technologies are essential for developing adaptive systems for applications in tele-diagnostics, rehabilitation, and robotic motion planning that aim to serve broad populations.


Verlagsausgabe §
DOI: 10.5445/IR/1000180725
Veröffentlicht am 02.04.2025
Originalveröffentlichung
DOI: 10.1038/s41597-025-04818-y
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 29.03.2025
Sprache Englisch
Identifikator ISSN: 2052-4463
KITopen-ID: 1000180725
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in Scientific Data
Verlag Nature Research
Band 12
Heft 1
Seiten Art.-Nr.: 531
Nachgewiesen in Dimensions
OpenAlex
Scopus
Web of Science
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page