KIT | KIT-Bibliothek | Impressum | Datenschutz

Role of interfacial surface anisotropy on liquid grooving at grain boundaries: A phase-field study

Umar, Muhammad 1; Pavan Laxmipathy, V.; Schneider, Daniel ORCID iD icon 2; Selzer, Michael ORCID iD icon 2; Nestler, Britta 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Engineering materials are polycrystalline in nature, consisting of numerous single crystals interconnected through a three-dimensional interfacial network known as grain boundaries. Often essential in defining the performance and durability of materials, grain boundaries attract considerable attention during alloy development. Initially, we employ a multi-phase-field model and validate the phenomenon of grain-boundary grooving under isotropic energy conditions, with bulk diffusion as the dominant mass transport mechanism. Subsequently, we investigate the effects of interfacial surface anisotropy and crystal misorientation on groove formation. This present study focuses on the effects of interfacial surface anisotropy and crystal misorientation and, thus, allows us to draw comparisons between the effects of different physical phenomena on the grain-boundary behavior. It is observed that the groove kinetics accelerate as a result of fourfold anisotropy, with groove root deepening proportional to the imposed anisotropic strength. Furthermore, the phase-field results presented here align well with theoretical predictions. In addition, we briefly study on the effect of solid–solid anisotropy on the groove root position. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000180836
Veröffentlicht am 10.04.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 21.03.2025
Sprache Englisch
Identifikator ISSN: 0021-8979, 0148-6349, 1089-7550, 2163-5102
KITopen-ID: 1000180836
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Journal of Applied Physics
Verlag American Institute of Physics (AIP)
Band 137
Heft 11
Seiten Art.-Nr.: 114901
Vorab online veröffentlicht am 19.03.2025
Nachgewiesen in Scopus
Web of Science
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page