KIT | KIT-Bibliothek | Impressum | Datenschutz

Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events

Acuña Espinoza, Eduardo ORCID iD icon; Loritz, Ralf 1; Kratzert, Frederik; Klotz, Daniel; Gauch, Martin; Álvarez Chaves, Manuel; Ehret, Uwe 1
1 Institut für Wasser und Gewässerentwicklung (IWG), Karlsruher Institut für Technologie (KIT)

Abstract:

Data-driven techniques have shown the potential
to outperform process-based models in rainfall–runoff simu-
lation. Recently, hybrid models, which combine data-driven
methods with process-based approaches, have been proposed
to leverage the strengths of both methodologies, aiming to
enhance simulation accuracy while maintaining a certain in-
terpretability. Expanding the set of test cases to evaluate hy-
brid models under different conditions, we test their gener-
alization capabilities for extreme hydrological events, com-
paring their performance against long short-term memory
(LSTM) networks and process-based models. Our results in-
dicate that hybrid models show performance similar to that
of the LSTM network for most cases. However, hybrid mod-
els reported slightly lower errors in the most extreme cases
and were able to produce higher peak discharges.


Verlagsausgabe §
DOI: 10.5445/IR/1000180846
Veröffentlicht am 08.04.2025
Originalveröffentlichung
DOI: 10.5194/hess-29-1277-2025
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wasser und Gewässerentwicklung (IWG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1027-5606, 1607-7938
KITopen-ID: 1000180846
Erschienen in Hydrology and Earth System Sciences
Verlag Copernicus Publications
Band 29
Heft 5
Seiten 1277 – 1294
Vorab online veröffentlicht am 11.03.2025
Nachgewiesen in Dimensions
Scopus
OpenAlex
Web of Science
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page