KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhancing hydrological rainfall-runoff simulation using machine learning methods

Acuña Espinoza, Eduardo ORCID iD icon 1
1 Institut für Wasser und Umwelt (IWU), Karlsruher Institut für Technologie (KIT)

Abstract:

Hydrological rainfall-runoff modeling plays an important role in several water resource applications, including flood forecasting, hydroelectric power generation, and water supply planning. Moreover, accurate and reliable predictions contribute to better decision-making in these areas. While machine learning (ML) techniques have significantly advanced these models, challenges remain in improving interpretability, generalization to unseen conditions, and efficient handling of high-resolution data. This thesis advances the state-of-the-art by addressing these challenges.
Chapters 2 and 3 focus on the hybrid modeling paradigm, where data-driven techniques — more specifically, long-short term memory networks (LSTMs) — are integrated with conceptual hydrological models. Through a series of experiments, the hybrid models’ performance, interpretability, and generalization capabilities are assessed. The results demonstrate that hybrid models achieve state-of-the-art performance, comparable to stand-alone data-driven techniques, and surpassing traditional conceptual models. However, the experiments in Chapter 2 also reveal that, when coupled, the data-driven approach can compensate for structural deficiencies in the conceptual components. ... mehr


Volltext §
DOI: 10.5445/IR/1000182751
Veröffentlicht am 03.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF)
Institut für Stochastik (STOCH)
Institut für Wasser und Umwelt (IWU)
Publikationstyp Hochschulschrift
Publikationsdatum 03.07.2025
Sprache Englisch
Identifikator KITopen-ID: 1000182751
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xvi, 93 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften (BGU)
Institut Institut für Wasser und Umwelt (IWU)
Prüfungsdatum 06.06.2025
Schlagwörter hydrology, rainfall-runoff, machine learning, hybrid models, LSTM
Nachgewiesen in OpenAlex
Relationen in KITopen
Referent/Betreuer Ehret, Uwe
Bauerle, Nicole
Cermak, Jan
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page