KIT | KIT-Bibliothek | Impressum | Datenschutz

SGRiT: Non-Negative Matrix Factorization via Subspace Graph Regularization and Riemannian-Based Trust Region Algorithm

Nokhodchian, Mohsen; Moattar, Mohammad Hossein; Jalali, Mehrdad ORCID iD icon 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Non-negative Matrix Factorization (NMF) has gained popularity due to its effectiveness in clustering and feature selection tasks. It is particularly valuable for managing high-dimensional data by reducing dimensionality and providing meaningful semantic representations. However, traditional NMF methods may encounter challenges when dealing with noisy data, outliers, or when the underlying manifold structure of the data is overlooked. This paper introduces an innovative approach called SGRiT, which employs Stiefel manifold optimization to enhance the extraction of latent features. These learned features have been shown to be highly informative for clustering tasks. The method leverages a spectral decomposition criterion to obtain a low-dimensional embedding that captures the intrinsic geometric structure of the data. Additionally, this paper presents a solution for addressing the Stiefel manifold problem and utilizes a Riemannian-based trust region algorithm to optimize the loss function. The outcome of this optimization process is a new representation of the data in a transformed space, which can subsequently serve as input for the NMF algorithm. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181054
Veröffentlicht am 19.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2504-4990
KITopen-ID: 1000181054
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Machine Learning and Knowledge Extraction
Verlag MDPI
Band 7
Heft 1
Seiten 25
Vorab online veröffentlicht am 11.03.2025
Schlagwörter Non-negative Matrix Factorization, clustering, dimension reduction, Stiefel manifold, Riemannian manifolds, subspace graph regularization
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page