KIT | KIT-Bibliothek | Impressum | Datenschutz

Integrating Automated Electrochemistry and High‐Throughput Characterization with Machine Learning to Explore Si─Ge─Sn Thin‐Film Lithium Battery Anodes

Sanin, Alexey 1; Flowers, Jackson K. 1; Piotrowiak, Tobias H.; Felsen, Frederic; Merker, Leon 2; Ludwig, Alfred; Bresser, Dominic 2; Stein, Helge Sören ORCID iD icon 1
1 Institut für Physikalische Chemie (IPC), Karlsruher Institut für Technologie (KIT)
2 Helmholtz-Institut Ulm (HIU), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

High-performance batteries need accelerated discovery and optimization of new anode materials. Herein, we explore the Si─Ge─Sn ternary alloy system as a candidate fast-charging anode materials system by utilizing a scanning droplet cell (SDC) as an autonomous electrochemical characterization tool with the goal of subsequent upscaling. As the SDC is performing experiments sequentially, an exploration of the entire ternary space is unfeasible due to time constraints. Thus, closed-loop optimization, guided by real-time data analysis and sequential learning algorithms, is utilized to direct experiments. The lead material identified is scaled up to a coin cell to validate the findings from the autonomous millimeter-scale thin-film electrochemical experimentation. Explainable machine learning (ML) models incorporating data from high-throughput Raman spectroscopy and X-ray diffraction (XRD) are used to elucidate the effect of short and long-range ordering on material performance.


Verlagsausgabe §
DOI: 10.5445/IR/1000181065
Veröffentlicht am 19.12.2025
Originalveröffentlichung
DOI: 10.1002/aenm.202404961
Scopus
Zitationen: 6
Web of Science
Zitationen: 8
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Institut für Physikalische Chemie (IPC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2025
Sprache Englisch
Identifikator ISSN: 1614-6832, 1614-6840
KITopen-ID: 1000181065
Erschienen in Advanced Energy Materials
Verlag Wiley-VCH Verlag
Band 15
Heft 11
Vorab online veröffentlicht am 26.01.2025
Schlagwörter active Learning, batteries, Data Science, electrochemistry, high-throughput
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page