KIT | KIT-Bibliothek | Impressum | Datenschutz

Very short-term solar irradiance forecasting based on open-source low-cost sky imager and hybrid deep-learning techniques

Ansong, Martin 1; Huang, Gan ORCID iD icon 1; Nyang’onda, Thomas N.; Musembi, Robinson J.; Richards, Bryce S. ORCID iD icon 1,2
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
2 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)

Abstract:

Solar irradiance (SI) forecasting is vital for reliable photovoltaic (PV) operation. This is especially true for regions like Africa where many SI forecasting approaches rely on scarce historical data and the inherent instabilities of electric grids are further compounded by SI variability. Accurate solar forecasting is essential for improving grid management, enabling operators to balance supply and demand and enhance stability. Ground-based sky imaging is a promising technique for SI forecasting that do not require extensive historical data. However, commercial sky imagers are expensive and offer limited flexibility. This paper introduces the Karlsruhe low-cost all-sky imager (KALiSI), made from off-the-shelf components that captures high-resolution images and can be assembled for less than €600. The KALiSI was installed in Karlsruhe, Germany, to collect images to train a convolution neural network-long short-term memory (CNN-LSTM) model for 15 min-ahead forecasting of global horizontal irradiance (GHI). The root mean squared (RMS) error of the model ranges from 19–206 W/m2, compared to 33–257 W/m2 for persistence, while mean absolute (MA) errors range from 15–144 W/m2 for CNN-LSTM and 30–159 W/m2 for persistence. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181371
Veröffentlicht am 29.04.2025
Originalveröffentlichung
DOI: 10.1016/j.solener.2025.113516
Scopus
Zitationen: 4
Web of Science
Zitationen: 3
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 0038-092X, 1471-1257
KITopen-ID: 1000181371
HGF-Programm 38.01.04 (POF IV, LK 01) Modules, Stability, Performance and Specific Applications
Erschienen in Solar Energy
Verlag Elsevier
Band 294
Seiten 113516
Nachgewiesen in Dimensions
Web of Science
Scopus
OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page