KIT | KIT-Bibliothek | Impressum | Datenschutz

A unifying class of compound Poisson integer‐valued ARMA and GARCH models

Bracher, Johannes ORCID iD icon 1; Němcová, Barbora 1
1 Institut für Statistik (STAT), Karlsruher Institut für Technologie (KIT)

Abstract:

INAR (integer-valued autoregressive) and INGARCH (integer-valued GARCH) models are among the most commonly employed approaches for count time series modeling, but have been studied in largely distinct strands of literature. In this paper, a new class of generalized integer-valued ARMA (GINARMA) models is introduced which unifies a large number of compound Poisson INAR and INGARCH processes. Its stochastic properties, including stationarity and geometric ergodicity, are studied. Particular attention is given to a generalization of the INAR(p) model which parallels the extension of the INARCH() to the INGARCH(p, q) model. For inference, we consider maximum likelihood, Gaussian quasi-likelihood, and moment-based approaches, along with likelihood ratio tests to distinguish between selected instances of our class. Models from the proposed class have a natural interpretation as stochastic epidemic processes, which throughout the article is used to illustrate our arguments. In a case study, different instances, including both established and newly introduced models, are applied to weekly case numbers of measles and mumps in Bavaria, Germany.


Verlagsausgabe §
DOI: 10.5445/IR/1000181534
Veröffentlicht am 07.05.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Statistik (STAT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2025
Sprache Englisch
Identifikator ISSN: 0303-6898, 1467-9469
KITopen-ID: 1000181534
Erschienen in Scandinavian Journal of Statistics
Verlag John Wiley and Sons
Band 52
Heft 3
Seiten 1176–1205
Vorab online veröffentlicht am 20.04.2025
Nachgewiesen in OpenAlex
Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page