KIT | KIT-Bibliothek | Impressum | Datenschutz

Hybrid Machine Learning for CNC Process Monitoring

Ströbel, Robin ORCID iD icon 1; Deucker, Samuel 1; Zhou, Hanlin 1; Kader, Hafez; Puchta, Alexander 1; Noack, Benjamin; Fleischer, Jürgen 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The transition to highly customized, one-off production in modern manufacturing necessitates sophisticated process monitoring to reduce waste, minimise downtime, and alleviate operator burden. Computer Numerically Controlled (CNC) axes represent a fundamental component of automated manufacturing and offer a universal and accessible monitoring option through power supply data. By accurately predicting reference signals and comparing them with real-time measurements, deviations can be used for effective model-based process monitoring and anomaly detection. This study explores the efficacy of hybrid machine learning (ML) models in predicting reference signals for CNC axes using features derived from a physical model. Additionally, relevant but difficult-to-measure features such as process forces and the material removal rate (MMR) were made accessible through soft sensors. Various ML models were evaluated, including tree-based models (e.g. random forest (RF) and gradient boosting (GB)) and deep learning (DL) models (e.g. feed-forward neural networks (FNN), long short-term memory (LSTM), and transformers-based models (TF)). Feature importance analysis was performed, identifying velocity, acceleration, process forces, spindle torque, andMMRas crucial predictors that influence model performance. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000182102
Veröffentlicht am 02.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2025
Sprache Deutsch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000182102
Erschienen in IEEE Access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 13
Heft 1
Seiten 91875–91888
Projektinformation DatAmount (BMWE, BG08653/22)
Schlagwörter Machine tool, CNC,process monitoring, signal prediction, machine learning
Nachgewiesen in Scopus
OpenAlex
Web of Science
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page