KIT | KIT-Bibliothek | Impressum | Datenschutz

Partial-Label Learning with a Reject Option

Fuchs, Tobias; Kalinke, Florian ORCID iD icon 1; Böhm, Klemens 1
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract:

In real-world applications, one often encounters ambiguously labeled data, where different annotators assign conflicting class labels. Partial-label learning allows training classifiers in this weakly supervised setting, where state-of-the-art methods already show good predictive performance. However, even the best algorithms give incorrect predictions, which can have severe consequences when they impact actions or decisions. We propose a novel risk-consistent nearest-neighbor-based partial-label learning algorithm with a reject option, that is, the algorithm can reject unsure predictions. Extensive experiments on artificial and real-world datasets show that our method provides the best trade-off between the number and accuracy of non-rejected predictions when compared to our competitors, which use confidence thresholds for rejecting unsure predictions. When evaluated without the reject option, our nearest-neighbor-based approach also achieves competitive prediction performance.


Preprint §
DOI: 10.5445/IR/1000182131
Veröffentlicht am 04.06.2025
Scopus
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 07.01.2025
Sprache Englisch
Identifikator ISSN: 2835-8856
KITopen-ID: 1000182131
Erschienen in Transactions on Machine Learning Research
Verlag OpenReview.net
Band 1
Externe Relationen Siehe auch
Nachgewiesen in Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page