KIT | KIT-Bibliothek | Impressum | Datenschutz

Accurate and Robust Weakly Supervised Learning with Candidate Labels

Fuchs, Tobias ORCID iD icon 1
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract:

Machine learning algorithms underpin many modern technologies but typically rely on supervised learning, which assumes access to fully annotated, noise-free training data. In practice, this assumption rarely holds: real-world datasets are often noisy, incomplete, or ambiguous. In crowdsourcing, for example, experts can assign conflicting labels to the same instances. While such datasets can be manually cleaned, sanitizing data is costly.

Partial-label learning (PLL) offers a principled framework to address such ambiguous data. Thereby, each training instance is associated with a set of candidate labels, of which only one is correct but unknown. The PLL framework aims at training classifiers in this setting that perform well on unseen samples. However, the absence of exact ground truth makes it particularly difficult to construct reliable and accurate classifiers. Ensuring that such models make reliable predictions thus requires robust algorithms that can deal with uncertainty, abstain from unreliable decisions, or adapt to imperfect data.

This thesis addresses these challenges by developing accurate and robust partial-label learning methods. ... mehr


Volltext §
DOI: 10.5445/IR/1000190012
Veröffentlicht am 28.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Hochschulschrift
Publikationsdatum 28.01.2026
Sprache Englisch
Identifikator KITopen-ID: 1000190012
Verlag Karlsruher Institut für Technologie (KIT)
Umfang vii, 113 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Lehrstuhl IPD Böhm (Lehrstuhl IPD Böhm)
Prüfungsdatum 19.01.2026
Externe Relationen Siehe auch
Schlagwörter Weakly Supervised Learning, Partial-Label Learning
Relationen in KITopen
Referent/Betreuer Klein, Nadja
Böhm, Klemens
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page