KIT | KIT-Bibliothek | Impressum | Datenschutz

Partial-Label Learning with Conformal Candidate Cleaning

Fuchs, Tobias ORCID iD icon 1; Kalinke, Florian ORCID iD icon 1
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Real-world data is often ambiguous; for example, human annotation produces instances with multiple conflicting class labels. Partial-label learning (PLL) aims at training a classifier in this challenging setting, where each instance is associated with a set of candidate labels and one correct, but unknown, class label. A multitude of algorithms targeting this setting exists and, to enhance their prediction quality, several extensions that are applicable across a wide range of PLL methods have been introduced. While many of these extensions rely on heuristics, this article proposes a novel enhancing method that incrementally prunes candidate sets using conformal prediction. To work around the missing labeled validation set, which is typically required for conformal prediction, we propose a strategy that alternates between training a PLL classifier to label the validation set, leveraging these predicted class labels for calibration, and pruning candidate labels that are not part of the resulting conformal sets. In this sense, our method alternates between empirical risk minimization and candidate set pruning. We establish that our pruning method preserves the conformal validity with respect to the unknown ground truth. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186510
Veröffentlicht am 28.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2640-3498
KITopen-ID: 1000186510
Erschienen in Proceedings of Machine Learning Research
Veranstaltung 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025), Rio de Janeiro, Brasilien, 21.07.2025 – 25.07.2025
Auflage 286
Verlag ML Research Press
Seiten 1337 - 1347
Serie Proceedings of Machine Learning Research
Externe Relationen Abstract/Volltext
Nachgewiesen in Scopus
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page