KIT | KIT-Bibliothek | Impressum | Datenschutz

Partial-Label Learning with Conformal Candidate Cleaning

Fuchs, Tobias; Kalinke, Florian ORCID iD icon 1
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract:

Real-world data is often ambiguous; for example, human annotation produces instances with multiple conflicting class labels. Partial-label learning (PLL) aims at training a classifier in this challenging setting, where each instance is associated with
a set of candidate labels and one correct, but unknown, class label. A multitude of algorithms targeting this setting exists and, to enhance their prediction quality, several extensions that are applicable across a wide range of PLL methods have
been introduced. While many of these extensions rely on heuristics, this article proposes a novel enhancing method that incrementally prunes candidate sets using conformal prediction. To work around the missing labeled validation set, which is typically required for conformal prediction, we propose a strategy that alternates between training a PLL classifier to label the validation set, leveraging these predicted class labels for calibration, and pruning candidate labels that are not part of the resulting conformal sets. In this sense, our method alternates between empirical risk minimization and candidate set pruning. We establish that our pruning method preserves the conformal validity with respect to the unknown ground truth.
... mehr


Volltext §
DOI: 10.5445/IR/1000182133
Veröffentlicht am 04.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 23.05.2025
Sprache Englisch
Identifikator KITopen-ID: 1000182133
Verlag arxiv
Serie Computer Science - Machine Learning
Vorab online veröffentlicht am 11.02.2025
Nachgewiesen in arXiv
Dimensions
OpenAlex
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page