KIT | KIT-Bibliothek | Impressum | Datenschutz

Advancing Sustainable Additive Manufacturing: Analyzing Parameter Influences and Machine Learning Approaches for CO₂ Prediction

Hauck, Svenja 1; Greif, Lucas ORCID iD icon 1; Benner, Nils 1; Ovtcharova, Jivka 1
1 Institut für Informationsmanagement im Ingenieurwesen (IMI), Karlsruher Institut für Technologie (KIT)

Abstract:

The global push for sustainable production, driven by initiatives like the Paris Agreement and the European Green Deal, necessitates reducing CO2 emissions in industrial processes. Additive manufacturing (AM), with its potential for material efficiency and decentralization, offers promising opportunities for lowering carbon footprints. Due to the significant importance of enhancing the performance of AM via the fine-tuning of printing parameters, this study investigates the dual objectives of understanding parameter influences and leveraging artificial intelligence (AI) to predict CO2 emissions in fused deposition modeling (FDM) processes. A full-factorial experimental design with 81 test prints was conducted, varying four key parameters—layer height, infill density, perimeters, and nozzle temperature—at three levels (min, mid, and max). The results highlight infill density as the most influential factor, significantly impacting material usage, energy consumption, and overall CO2 emissions. Five AI algorithms were employed for predictive modeling, with XGBoost demonstrating the highest accuracy in forecasting emissions. By systematically analyzing process interdependencies and providing quantitative insights, this study advances sustainable 3D printing practices. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000182186
Veröffentlicht am 05.06.2025
Originalveröffentlichung
DOI: 10.3390/su17093804
Scopus
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationsmanagement im Ingenieurwesen (IMI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2071-1050
KITopen-ID: 1000182186
Erschienen in Sustainability
Verlag MDPI
Band 17
Heft 9
Seiten 3804
Vorab online veröffentlicht am 23.04.2025
Schlagwörter machine learning; additive manufacturing; parameter influences; material and energy consumption; CO2 prediction
Nachgewiesen in OpenAlex
Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 12 – Nachhaltiger Konsum und ProduktionZiel 13 – Maßnahmen zum Klimaschutz
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page