KIT | KIT-Bibliothek | Impressum | Datenschutz

Selective Sampling: A Complexity-Aware Sampling Strategy for Combinatorial Scenario-based Testing

Birkemeyer, Lukas 1; Pett, Tobias ORCID iD icon 1; Runge, Tobias; Schaefer, Ina ORCID iD icon 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

The SOTIF-standard (ISO 21448) requires scenario-based testing to verify and validate advanced driver assistance systems and automated driving systems. Feature modeling and sampling have shown promising results for generating scenarios considered test cases for scenario-based testing. Sampling strategies commonly applied for generating scenarios pursue coverage-criteria such as t-wise feature interaction, but ignore the number of selected features in a valid configuration. In the context of scenario generation, the number of features in a configuration correlates to the complexity of a scenario; thus, considering the number of features is relevant for "sufficiently" covering the scenario space and generating SOTIF-compliant scenarios. In this paper, we propose a complexity-aware coverage criterion embedded in selective sampling as a complexity-aware sampling strategy. Selective sampling approximates and replicates the distribution of the number of selected features of valid configurations. We apply selective sampling to generate scenarios for testing two advanced driver assistance systems. Our experiments demonstrate that selective sampling has the potential to improve scenario generation.


Verlagsausgabe §
DOI: 10.5445/IR/1000182455
Veröffentlicht am 18.06.2025
Originalveröffentlichung
DOI: 10.1145/3715340.3715411
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 28.05.2025
Sprache Englisch
Identifikator ISBN: 979-84-00-71441-2
KITopen-ID: 1000182455
Erschienen in Proceedings of the 19th International Working Conference on Variability Modelling of Software-Intensive Systems
Veranstaltung 19th International Working Conference on Variability Modelling of Software-Intensive (VaMoS 2025), Rennes, Frankreich, 04.02.2025 – 06.02.2025
Verlag Association for Computing Machinery (ACM)
Seiten 40–48
Serie Proceedings
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page