KIT | KIT-Bibliothek | Impressum | Datenschutz

Active Learning for SAT Solver Benchmarking – Extended and Revised Version

Fuchs, Tobias 1; Bach, Jakob ORCID iD icon 2; Iser, Markus ORCID iD icon 3
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)
3 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Benchmarking is crucial for developing new algorithms. This also applies to solvers for the propositional satisfiability (SAT) problem. Benchmark selection is about choosing representative problem instances that reliably discriminate solvers based on their runtime. In this paper, we present a dynamic benchmark selection approach based on active learning. Our approach estimates the rank of a new solver among its competitors, striving to minimize benchmarking runtime but maximize ranking accuracy. Instead of using real-valued solver runtimes, our approach works with discretized runtime labels, which yielded better solver rank predictions. We evaluated this approach on the Anniversary Track dataset from the SAT Competition 2022. Our benchmark selection approach can predict the rank of a new solver after approximately 10 % of the time it would take to run the solver on all instances of this dataset, with a prediction accuracy of approximately 92 %. Additionally, we discuss the importance of instance families in the selection process. In conclusion, our tool offers a reliable method for solver engineers to assess a new solver’s performance efficiently.


Verlagsausgabe §
DOI: 10.5445/IR/1000182569
Veröffentlicht am 24.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 23.06.2025
Sprache Englisch
Identifikator ISSN: 0168-7433, 1573-0670
KITopen-ID: 1000182569
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Journal of Automated Reasoning
Verlag Springer
Band 69
Heft 3
Seiten 16
Externe Relationen Forschungsdaten/Software
Forschungsdaten/Software
Schlagwörter Propositional satisfiability, Benchmark selection, Active learning
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page