KIT | KIT-Bibliothek | Impressum | Datenschutz

Energy Efficiency Analysis of Federated Learning: Insights from UAV-Based Thermal Imaging Applications

Duda, Leonhard ORCID iD icon 1; Alibabaei, Khadijeh ORCID iD icon 1; Kozlov, Valentin ORCID iD icon 1; Berberi, Lisana ORCID iD icon 1; Vollmer, Elena ORCID iD icon 2; Klug, Leon; Benz, Mishal; Volk, Rebekka ORCID iD icon 2; Gutiérrez Hermosillo Muriedas, Juan Pedro ORCID iD icon; Goetz, Markus ORCID iD icon 1; Sáinz-Pardo Díaz, Judith; Lopez Garcia, Alvaro; Schultmann, Frank ORCID iD icon 2; Streit, Achim ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)
2 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)

Abstract:

Federated Learning (FL) is an approach for training a Machine Learning (ML) model with distributed training data and multiple participants. It allows bypassing the limitations of the traditional Centralized Machine Learning (CL) if data cannot be shared or stored centrally due to privacy restrictions or technical constraints - the participants train the model locally with their own training data and do not need to share it among the other participants. Only the locally updated model weights are shared after each round of training.
However, transitioning from CL to FL can inherently increase the demand for energy and computational resources. Additional resources are needed not only for the local training of each participant on its own device, but also for the communication and the server infrastructure to support and coordinate FL workflows.
This study investigates energy consumption in a real-world implementation of FL using different FL aggregation algorithms and workflows, using the NVIDIA Federated Learning Application Runtime Environment (NVFlare), compared to CL approach. It is also shown how the decentralized FL approaches (without a central server) behave compared to the centralized FL approaches, where a server is necessary. ... mehr


Volltext §
DOI: 10.5445/IR/1000182617
Veröffentlicht am 25.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Scientific Computing Center (SCC)
Publikationstyp Vortrag
Publikationsdatum 04.06.2025
Sprache Englisch
Identifikator KITopen-ID: 1000182617
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Veranstaltung EGI Conference (2025), Santander, Spanien, 02.06.2025 – 06.06.2025
Projektinformation AI4EOSC (EU, EU 9. RP, 101058593)
Schlagwörter Federated Learning, Distributed Learning, Real-world Implementation, Segmentation, Energy Consumption, Thermal Anomaly Detection
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page