KIT | KIT-Bibliothek | Impressum | Datenschutz

Practitioner Motives to Use Different Hyperparameter Optimization Methods

Kannengiesser, Niclas ORCID iD icon 1; Hasebrook, Niklas; Morsbach, Felix ORCID iD icon; Zöller, Marc-André; Franke, Jörg K. H.; Lindauer, Marius; Hutter, Frank; Sunyaev, Ali
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Programmatic hyperparameter optimization (HPO) methods, such as Bayesian optimization and evolutionary algorithms, are known for their sample efficiency in identifying optimal configurations for machine learning (ML) models. However, practitioners often use less efficient methods, such as grid search, potentially resulting in under-optimized models. This discrepancy suggests that HPO method selection may be influenced by practitioner-specific motives, which remain insufficiently understood hindering user-centered advancement of HPO tools. To uncover these motives, we conducted 20 semi-structured interviews and an online survey with 49 ML practitioners. We revealed six primary goals (e.g., increasing ML model understanding) and 14 contextual factors (e.g., available computational resources) that influence practitioners’ choices of HPO methods. This study provides a conceptual foundation for understanding real-world HPO practices and informs the development of more user-centered and context-adaptive HPO tools in automated ML (AutoML).


Verlagsausgabe §
DOI: 10.5445/IR/1000182626
Veröffentlicht am 05.02.2026
Originalveröffentlichung
DOI: 10.1145/3745771
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 31.12.2025
Sprache Englisch
Identifikator ISSN: 1073-0516, 1557-7325
KITopen-ID: 1000182626
Erschienen in ACM Transactions on Computer-Human Interaction
Verlag Association for Computing Machinery (ACM)
Band 32
Heft 6
Seiten 1–33
Vorab online veröffentlicht am 09.12.2025
Nachgewiesen in OpenAlex
Dimensions
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page