KIT | KIT-Bibliothek | Impressum | Datenschutz

Predicting Filter Medium Performances in Chamber Filter Presses with Digital Twins Using Neural Network Technologies

Teutscher, Dennis 1; Weber-Carstanjen, Tyll; Simonis, Stephan ORCID iD icon 2; Krause, Mathias J. 1,2
1 Institut für Mechanische Verfahrenstechnik und Mechanik (MVM), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

Efficient solid–liquid separation is crucial in industries like mining, but traditional chamber filter presses depend heavily on manual monitoring, leading to inefficiencies, downtime, and resource wastage. This paper introduces a machine learning-powered digital twin framework to improve the operational flexibility and predictive control of a traditional chamber filter press. A key challenge addressed is the degradation of the filter medium due to repeated cycles and clogging, which reduces filtration efficiency. To solve this, a neural network-based predictive model was developed to forecast operational parameters, such as pressure and flow rates, under various conditions. This predictive capability allows for optimized filtration cycles, reduced downtime, and improved process efficiency. Additionally, the model predicts the filter medium’s lifespan, aiding in maintenance planning and resource sustainability. The digital twin framework enables seamless data exchange between filter press sensors and the predictive model, ensuring continuous updates to the training data and enhancing accuracy over time. Two neural network architectures, feedforward and recurrent, were evaluated. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000182961
Veröffentlicht am 10.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Institut für Mechanische Verfahrenstechnik und Mechanik (MVM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2076-3417
KITopen-ID: 1000182961
Erschienen in Applied Sciences (Switzerland)
Verlag MDPI
Band 15
Heft 9
Seiten 4933
Vorab online veröffentlicht am 29.04.2025
Schlagwörter chamber filter press; neural network; digital twin; machine learning; feedforward neural network; recurrent neural network; monitoring; maintenance
Nachgewiesen in OpenAlex
Scopus
Dimensions
Web of Science
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page