KIT | KIT-Bibliothek | Impressum | Datenschutz

Explainable AI for online disinformation detection: Insights from a design science research project

Bezzaoui, Isabel ORCID iD icon 1; Stein, Carolin ORCID iD icon 1; Weinhardt, Christof ORCID iD icon 1; Fegert, Jonas ORCID iD icon 1
1 Institut für Wirtschaftsinformatik (WIN), Karlsruher Institut für Technologie (KIT)

Abstract:

The pervasive threat of online disinformation challenges the integrity of the digital public sphere and the resilience of liberal democracies. This study conceptualizes and evaluates an explainable artificial intelligence (XAI) artifact specifically designed for disinformation detection, integrating confidence scores, visual explanations, and detailed insights into potentially misleading content. Based on a systematic empirical literature review, we establish theoretically informed design principles to guide responsible XAI development. Using a mixed-method approach, including qualitative user testing and a large-scale online study (n = 344), we reveal nuanced findings: while explainability features did not inherently enhance trust or usability, they sometimes introduced uncertainty and reduced classification agreement. Demographic insights highlight the pivotal role of age and trust propensity, with older users facing greater challenges in comprehension and usability. Users expressed a preference for simplified and visually intuitive features. These insights underscore the critical importance of iterative, user-centered design in aligning XAI systems with diverse user needs and ethical imperatives. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000183202
Veröffentlicht am 16.07.2025
Originalveröffentlichung
DOI: 10.1007/s12525-025-00799-3
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik (WIN)
Institut für Wirtschaftsinformatik und Marketing (IISM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 1019-6781, 1422-8890
KITopen-ID: 1000183202
Erschienen in Electronic Markets
Verlag Springer
Band 35
Heft 1
Seiten 66
Vorab online veröffentlicht am 16.07.2025
Nachgewiesen in Scopus
Web of Science
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page