KIT | KIT-Bibliothek | Impressum | Datenschutz

Dehn functions of groups with filiform subgroups

García Mejía, Jerónimo 1
1 Institut für Algebra und Geometrie (IAG), Karlsruher Institut für Technologie (KIT)

Abstract:

This thesis provides new insights on the asymptotic geometry of locally compact groups with a particular focus on their Dehn functions.

In this work, we focus on the study of the Dehn functions of compact and finitely generated groups that contain so-called filiform groups as subgroups. Filiform groups play a central role in understanding the asymptotic geometry of the groups we investigate. We present several classes of groups where the Dehn functions are determined by the Dehn function of a maximal filiform subgroup. This leads to the question of whether this is a general principle. We answer this question negatively by identifying an interesting phenomenon in the context of nilpotent groups. Specifically, we observe that in certain central products of nilpotent groups, where filiform groups are used as building blocks, their Dehn functions are smaller than those of the maximal filiform subgroup.

The main results of this work consist of determining the precise Dehn functions of a large class of nilpotent groups and of natural families of mapping tori of right-angled Artin groups, RAAGs for short. The study of Dehn functions of nilpotent groups can be understood in the context of the conjectural quasi-isometry classification of nilpotent groups (see Conjecture 1); whereas the study of the Dehn functions of mapping tori of RAAGs is motivated by a question of Vogtmann [PR19, p.2] motivated by the work in [BP94, BG96, BG10].
... mehr


Volltext §
DOI: 10.5445/IR/1000183240
Veröffentlicht am 23.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Institut für Katalyseforschung und -technologie (IKFT)
Publikationstyp Hochschulschrift
Publikationsdatum 23.07.2025
Sprache Englisch
Identifikator KITopen-ID: 1000183240
Verlag Karlsruher Institut für Technologie (KIT)
Umfang iii, 158 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Algebra und Geometrie (IAG)
Prüfungsdatum 11.09.2024
Schlagwörter Dehn functions, nilpotent groups, non-positively curved groups, right-angled Artin groups, asymptotic invariants of groups
Nachgewiesen in OpenAlex
Referent/Betreuer Llosa Isenrich, Claudio
Sauer, Roman
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page