KIT | KIT-Bibliothek | Impressum | Datenschutz

Incremental learning of humanoid robot behavior from natural interaction and large language models

Bärmann, Leonard ORCID iD icon 1; Kartmann, Rainer 1; Peller-Konrad, Fabian 1; Niehues, Jan ORCID iD icon 1; Waibel, Alex 1; Asfour, Tamim 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Natural-language dialog is key for an intuitive human–robot interaction. It
can be used not only to express humans’ intents but also to communicate
instructions for improvement if a robot does not understand a command
correctly. It is of great importance to let robots learn from such interaction
experiences in an incremental way to allow them to improve their behaviors
or avoid mistakes in the future. In this paper, we propose a system to
achieve such incremental learning of complex high-level behavior from natural
interaction and demonstrate its implementation on a humanoid robot. Our
system deploys large language models (LLMs) for high-level orchestration of
the robot’s behavior based on the idea of enabling the LLM to generate Python
statements in an interactive console to invoke both robot perception and action.
Human instructions, environment observations, and execution results are fed
back to the LLM, thus informing the generation of the next statement. Since an
LLM can misunderstand (potentially ambiguous) user instructions, we introduce
incremental learning from the interaction, which enables the system to learn
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000183311
Veröffentlicht am 22.07.2025
Originalveröffentlichung
DOI: 10.3389/frobt.2024.1455375
Scopus
Zitationen: 9
Dimensions
Zitationen: 27
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2296-9144
KITopen-ID: 1000183311
Erschienen in Frontiers in Robotics and AI
Verlag Frontiers Media SA
Band 11
Seiten Art.-Nr.: 1455375
Vorab online veröffentlicht am 10.10.2024
Externe Relationen Siehe auch
Nachgewiesen in Dimensions
OpenAlex
Scopus
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page