KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimal BESS Management for Peak Load Shaving and Battery Health Under Prediction Uncertainty

Li, Lixin ORCID iD icon 1; Kappler, Tim ORCID iD icon 1; Schwarz, Bernhard ORCID iD icon 1; Munzke, Nina ORCID iD icon 1; Dai, Xinliang ORCID iD icon 2; Hagenmeyer, Veit ORCID iD icon 2; Hiller, Marc 1
1 Elektrotechnisches Institut (ETI), Karlsruher Institut für Technologie (KIT)
2 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

In modern power grids, integrating renewable energy sources (RESs), deploying battery energy storage systems (BESSs) is increasingly vital for mitigating power fluctuations. However, optimizing BESS operation remains challenging amidst uncertainties in both RES and load forecasting. This paper proposes a novel stochastic model predictive control (SMPC) framework for BESS operation, focusing on peak load shaving and battery health while addressing prediction uncertainties. The proposed framework employs a long short-term memory (LSTM) neural network for forecasting and integrates a constraint-tightening technique into a stochastic optimization (SO) problem with a receding horizon. Based on the load profile of a company in Germany, the proposed framework achieves an additional reduction of 99 kW(5.8%) in peak grid take-out power compared with the traditional model predictive control (MPC) approach, demonstrating its advantage in addressing uncertainties.


Postprint §
DOI: 10.5445/IR/1000183390/post
Veröffentlicht am 24.10.2025
Preprint §
DOI: 10.5445/IR/1000183390
Veröffentlicht am 24.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Elektrotechnisches Institut (ETI)
Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1949-3029, 1949-3037
KITopen-ID: 1000183390
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Erschienen in IEEE Transactions on Sustainable Energy
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–13
Projektinformation ESIP (BMWE, 03EI6062B)
Schlagwörter Battery energy storage system, Stochastic model predictive control, Prediction uncertainty, Peak shaving, Battery, degradation, Long short-term memory
Nachgewiesen in OpenAlex
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page