KIT | KIT-Bibliothek | Impressum | Datenschutz

Impact of Shading on Energy Management Strategies

Kappler, Tim ORCID iD icon 1; Strobel, Lukas ORCID iD icon 1; Schwarz, Bernhard ORCID iD icon 1; Munzke, Nina ORCID iD icon 1; Hiller, Marc 1
1 Elektrotechnisches Institut (ETI), Karlsruher Institut für Technologie (KIT)

Abstract:

The rapid expansion of photovoltaics (PV) requires intelligent operational strategies for energy storage systems. These strategies help manage PV surpluses during peak generation periods, reducing grid stress while optimising storage system performance. By minimising long periods of high state of charge and maintaining efficient operating conditions, such strategies also help to extend the lifetime of storage systems. However, effective implementation requires accurate forecasting of both PV generation and load demand. This study investigates the impact of forecast errors caused by shading, in particular by stationary objects, on storage system operation. An adaptive forecasting approach that dynamically adapts to shading conditions was developed and compared to a non-adaptive method. The analysis, based on real PV generation and load data over ten days, showed that the adaptive approach reduced grid consumption by 24% and the time spent at high state of charge by 29%. These results highlight the potential of adaptive prediction models to improve the efficiency and durability of storage systems.


Verlagsausgabe §
DOI: 10.5445/IR/1000183851
Veröffentlicht am 02.12.2025
Originalveröffentlichung
DOI: 10.52825/pv-symposium.v2i.2656
Cover der Publikation
Zugehörige Institution(en) am KIT Elektrotechnisches Institut (ETI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2942-8246
KITopen-ID: 1000183851
HGF-Programm 38.02.03 (POF IV, LK 01) Batteries in Application
Erschienen in PV-Symposium 2025
Veranstaltung 40. PV-Symposium (2025), Staffelstein, Deutschland, 11.03.2025 – 13.03.2025
Verlag TIB Open Publishing
Serie PV-Symposium Proceedings ; 2
Projektinformation VP: Solarpark (BMWE, 03EE1135A)
Vorab online veröffentlicht am 06.08.2025
Schlagwörter Energy Management Strategies, Forecasting, Machine Learning, Energy Storage Systems
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page