KIT | KIT-Bibliothek | Impressum | Datenschutz

Work performance evaluation of heavy-duty mobile machines (HDMMs)

Molaei, Amirmasoud ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The construction industry is crucial for economic growth, but its productivity has not improved much despite its importance. Heavy-duty mobile machines (HDMMs), particularly excavators, play a central role in construction projects, with their productivity directly impacting projects' productivity and costs. This dissertation aims to tackle several challenges regarding the automatic productivity estimation of an excavator in earth-moving operations, such as loading, trenching, and grading.

In the beginning, the significance of the construction industry and the critical role of HDMMs within it are discussed. It highlights the challenges faced by the industry, including low productivity growth and outdated practices, emphasizing the need for automated productivity estimation and progress monitoring. Then, an excavator is introduced as the main application in the research study. In the next phase, existing research studies for the productivity estimation of HDMMs are thoroughly explored to identify research gaps and to design multiple research questions that drive the dissertation's focus.

Capturing motion information using inertial measurement units (IMUs) holds promise for recognizing activities and automatically estimating cycle time and productivity. ... mehr


Volltext §
DOI: 10.5445/IR/1000183870
Veröffentlicht am 18.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Hochschulschrift
Publikationsdatum 18.08.2025
Sprache Englisch
Identifikator KITopen-ID: 1000183870
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xi, 110 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Maschinenbau (MACH)
Institut Institut für Fahrzeugsystemtechnik (FAST)
Prüfungsdatum 03.07.2025
Projektinformation MORE (EU, H2020, 858101)
Schlagwörter Excavator, Productivity Estimation, Progress Monitoring, Loading Operation, Grading Operation, Trenching Operation, Activity Recognition, Actual Cycle Time Estimation, Theoretical Cycle Time, Relative Cycle Time Index, Swing Angle, Digging Depth, Building Information Modeling (BIM), Elevation Terrain Mapping
Referent/Betreuer Geimer, Marcus
Rayyes, Rania
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page