KIT | KIT-Bibliothek | Impressum | Datenschutz

SpikeSynth: Energy-Efficient Adaptive Analog Printed Spiking Neural Networks

Pal, Priyanjana ORCID iD icon 1; Studt, Alexander 2; Gheshlaghi, Tara ORCID iD icon 1; Hefenbrock, Michael; Beigl, M. ORCID iD icon 2; Tahoori, Mehdi B. 1
1 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)
2 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract:

Biologically-inspired Spiking Neural Networks (SNNs) have emerged as a promising avenue toward energy-efficient neuromorphic computing, particularly in edge applications such as soft robotics, wearable health monitors, and IoT devices. Printed Electronics (PE), offering advantages of ultra-low cost fabrication and mechanical flexibility, present a viable platform to realize such neuromorphic systems at scale. However, designing adaptable and efficient spiking circuits
that meet the unique constraints of PE applications remains a challenge. To address this, we propose a novel analog spiking neuromorphic circuit with a learnable spike generator (LSG). Unlike fixed-threshold models, our generator adapts spike timing dynamics during training, enabling better task-specific performance. To optimize for ultra-low power consumption on resource-constrained platforms, we further introduce a robustness-aware training framework that further minimizes the energy consumption adaptively. Simulation results across 13 benchmarks demonstrate an average 57.6% power reduction for
the LSG while improving the average classification accuracy by 8%, area and energy reduction by 89% and 28.7% respectively compared to the state-of-the-art printed analog spiking neural networks (P-SNNs).


Postprint §
DOI: 10.5445/IR/1000183906
Veröffentlicht am 31.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 26.10.2025
Sprache Englisch
Identifikator KITopen-ID: 1000183906
Erschienen in 44th ACM/IEEE International Conference on Computer Aided Design (ICCAD 2025)
Veranstaltung 44th ACM/IEEE International Conference on Computer Aided Design (ICCAD 2025), München, Deutschland, 26.10.2025 – 30.10.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Schlagwörter spiking neural networks (P-SNN), neuromorphic computing, analog computing, Printed Electronics
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page