KIT | KIT-Bibliothek | Impressum | Datenschutz

End-to-End Learning of Probabilistic Constellation Shaping Through Importance Sampling

Chimmalgi, Shrinivas 1; Schmalen, Laurent 1; Aref, Vahid
1 Communications Engineering Lab (CEL), Karlsruher Institut für Technologie (KIT)

Abstract:

Probabilistic constellation shaping enables easy rate adaption and has been proven to reduce the gap to Shannon capacity. Constellation point probabilities are optimized to maximize either the mutual information or the bit-wise mutual information. The optimization problem is however challenging even for simple channel models. While autoencoder-based machine learning has been applied successfully to solve this problem, it requires manual computation of additional terms for the gradient which is an error-prone task. In this work, we present novel loss functions for autoencoder-based learning of probabilistic constellation shaping for coded modulation systems using automatic differentiation and importance sampling. We show analytically that our proposed approach also uses exact gradients of the constellation point probabilities for the optimization. In simulations, our results closely match the results from (Aref and Chagnon, 2022) for the additive white Gaussian noise channel and a simplified model of the intensity-modulation direct-detection channel.


Verlagsausgabe §
DOI: 10.5445/IR/1000184221
Veröffentlicht am 25.08.2025
Originalveröffentlichung
DOI: 10.1109/LPT.2025.3580672
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Communications Engineering Lab (CEL)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.09.2025
Sprache Englisch
Identifikator ISSN: 1041-1135, 1941-0174
KITopen-ID: 1000184221
Erschienen in IEEE Photonics Technology Letters
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 37
Heft 18
Seiten 1077–1080
Nachgewiesen in OpenAlex
Web of Science
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page