KIT | KIT-Bibliothek | Impressum | Datenschutz

Breather solutions to nonlinear Maxwell equations with retarded material laws

Ohrem, Sebastian 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider Maxwell's equations for Kerr-type optical materials, which are magnetically inactive and have a nonlinear response to electric fields. This response consists of a linear plus a cubic term, which are both inhomogeneous with bounded coefficients. The cubic term is temporally retarded while the linear term has instantaneous and retarded contributions. For slab waveguides we show existence of breathers, which are time-periodic, real-valued solutions that are localized in the direction perpendicular to the waveguide, and moreover they are traveling along one direction of the waveguide. We find these breathers using a variational method which relies on the assumption that an effective operator related to the linear part of Maxwell's equations has a spectral gap about 0. We also give examples of material coefficients, including nonperiodic materials, where such a spectral gap is present.


Volltext §
DOI: 10.5445/IR/1000184358
Veröffentlicht am 01.09.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 08.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000184358
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 28 S.
Serie CRC 1173 Preprint ; 2025/45
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter Maxwell equations, retarded nonlinear material law, polychromatic breather solution, variational method
Nachgewiesen in OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page