KIT | KIT-Bibliothek | Impressum | Datenschutz

Structure and Independence in Hyperbolic Uniform Disk Graphs

Bläsius, Thomas ORCID iD icon 1; von der Heydt, Jean-Pierre 2; Kisfaludi-Bak, Sándor ; Wilhelm, Marcus 2; van Wordragen, Geert; Aichholzer, Oswin [Hrsg.]; Wang, Haitao [Hrsg.]
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

We consider intersection graphs of disks of radius r in the hyperbolic plane. Unlike the Euclidean setting, these graph classes are different for different values of r, where very small r corresponds to an almost-Euclidean setting and r ∈ Ω(log n) corresponds to a firmly hyperbolic setting. We observe that larger values of r create simpler graph classes, at least in terms of separators and the computational complexity of the Independent Set problem.
First, we show that intersection graphs of disks of radius r in the hyperbolic plane can be separated with 𝒪((1+1/r)log n) cliques in a balanced manner. Our second structural insight concerns Delaunay complexes in the hyperbolic plane and may be of independent interest. We show that for any set S of n points with pairwise distance at least 2r in the hyperbolic plane, the corresponding Delaunay complex has outerplanarity 1+𝒪((log n)/r), which implies a similar bound on the balanced separators and treewidth of such Delaunay complexes.
Using this outerplanarity (and treewidth) bound we prove that Independent Set can be solved in n^𝒪(1+(log n)/r) time. The algorithm is based on dynamic programming on some unknown sphere cut decomposition that is based on the solution. ... mehr


Originalveröffentlichung
DOI: 10.4230/LIPIcs.SoCG.2025.21
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 978-395977370-6
ISSN: 1868-8969
KITopen-ID: 1000184480
Erschienen in 41st International Symposium on Computational Geometry (SoCG 2025). Ed.: O. Aichholzer
Veranstaltung 41st International Symposium on Computational Geometry (SoCG 2025), Kanazawa, Japan, 23.06.2025 – 27.06.2025
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 21
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 332
Schlagwörter hyperbolic geometry, unit disk graphs, independent set, treewidth, Theory of computation → Design and analysis of algorithms, Theory of computation → Computational geometry, Theory of computation → Graph algorithms analysis
Nachgewiesen in OpenAlex
Scopus
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page