KIT | KIT-Bibliothek | Impressum | Datenschutz

Temporal sequence-based object detection and action recognition for mobile machinery on construction sites

Helian, Bobo ORCID iD icon 1; Huang, Gen 2; Geimer, Marcus ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Automation of mobile machinery is critical in the construction industry to improve efficiency and ensure safety. Perception technologies, particularly for detecting and monitoring the actions of construction machinery, are essential for optimizing workflows and mitigating accident risks. However, the complex nature of construction environments, the variety of machines, and the dynamic interactions at construction sites pose significant challenges for reliable object detection and action recognition. This study introduces a deep learning approach using temporal vision information for object detection and action recognition of mobile machinery in construction environments. In particular, a novel strategy called Integrated YL-SF is proposed, which integrates the YOLOv8 framework with the SlowFast model enhanced by Transformers to achieve robust action recognition and motion analysis of construction machinery. The proposed method is evaluated on a custom dataset with a variety of machine types and real-world operating environments, and it is benchmarked against the standard YOLOv8 model. The results show that the Integrated YL-SF framework outperforms existing methods and effectively addresses challenges such as dynamic scenarios, object occlusion, and multi-machine interactions in complex environments.


Verlagsausgabe §
DOI: 10.5445/IR/1000184499
Veröffentlicht am 05.09.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 1474-0346
KITopen-ID: 1000184499
Erschienen in Advanced Engineering Informatics
Verlag Elsevier
Band 68
Heft B
Seiten 103691
Nachgewiesen in Scopus
OpenAlex
Web of Science
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page