KIT | KIT-Bibliothek | Impressum | Datenschutz

A simple and efficient second-order immersed-boundary method for the incompressible Navier–Stokes equations

Luchini, Paolo ; Gatti, Davide 1; Chiarini, Alessandro ; Gattere, Federica ; Atzori, Marco ; Quadrio, Maurizio
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Abstract:

An immersed-boundary method for the incompressible Navier-Stokes equations is presented. It employs discrete forcing for a sharp discrimination of the solid-fluid interface, and achieves second-order accuracy, demonstrated in examples with highly complex three-dimensional geometries. The method is implicit, meaning that the point in the solid which is nearest to the interface is accounted for implicitly, which benefits stability and convergence properties; the correction is also implicit in time (without requiring a matrix inversion), although the temporal integration scheme is fully explicit. The method stands out for its simplicity and efficiency: when integrated with second-order finite differences, only the weight of the center point of the Laplacian stencil in the momentum equation is modified, and no corrections for the continuity equation and the pressure are required. The immersed-boundary method, its performance and its accuracy are first verified on simple problems, and then put to test on a simple laminar, two-dimensional flow and on two more complex examples: the turbulent flow in a channel with a sinusoidal wall, and the flow in a human nasal cavity, whose extreme anatomical complexity mandates an accurate treatment of the boundary.


Verlagsausgabe §
DOI: 10.5445/IR/1000184620
Veröffentlicht am 08.09.2025
Originalveröffentlichung
DOI: 10.1016/j.jcp.2025.114245
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 0021-9991
KITopen-ID: 1000184620
Erschienen in Journal of Computational Physics
Verlag Elsevier
Band 539
Seiten 114245
Nachgewiesen in Dimensions
Web of Science
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page