KIT | KIT-Bibliothek | Impressum | Datenschutz

Bridging the sim2real gap: Training deep neural networks for heliostat detection with purely synthetic data

Broda, Rafal ; Schnerring, Alexander; Schnaus, Dominik; Nieslony, Michael; Krauth, Julian J.; Röger, Marc; Kallio, Sonja; Triebel, Rudolph 1; Pitz-Paal, Robert
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Deep neural networks have demonstrated remarkable success in image processing across various domains. However, to achieve state-of-the-art performance, a substantial amount of high-quality training data is essential. In the context of optical heliostat monitoring, acquiring such data remains a challenge which is why deep neural networks are still scarcely used. We propose the use of synthetic training data to address this deficit and conduct a comprehensive investigation of scene parameters within our simulation environment to mitigate the sim2real gap. Our findings demonstrate that training models for object and keypoint detection in aerial images of heliostat fields with purely synthetic data is feasible and yields promising results with the appropriate scene configuration. Our best model achieves an average precision (AP) of 0.63 in heliostat detection and accurately detects 61% of outer mirror corners on our test dataset, comprising six manually annotated real-world drone images of a heliostat field. By evaluating the model on a simulated replication of this test dataset, we measure a remaining sim2real gap of 30% and 35% for the respective tasks. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184621
Veröffentlicht am 08.09.2025
Originalveröffentlichung
DOI: 10.1016/j.solener.2025.113728
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 0038-092X
KITopen-ID: 1000184621
Erschienen in Solar Energy
Verlag Elsevier
Band 300
Seiten 113728
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page