KIT | KIT-Bibliothek | Impressum | Datenschutz

Novel Applications of Machine Learning and Data Science Methods in Evolutionary Genomics

Haag, Julia Annette Maria ORCID iD icon 1
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

The field of evolutionary genomics studies the evolutionary mechanisms that lead to the broad diversity of life on earth. Understanding these mechanisms not only helps to disentangle the origin of life, but also has practical applications such as for developing novel drugs, or tracking global pandemics. Phylogenetics and population genetics are two major subfields of evolutionary biology. While phylogenetics focuses on the evolutionary history between distinct species, population genetics studies the evolutionary mechanisms within populations of a single species, or among closely related species. In modern-day evolutionary genomics, analyses are typically performed using molecular sequence data and rely upon mathematical models that are implemented in scientific software tools.

Over the past decades, technological improvements have led to an avalanche of molecular sequence data. The amount of available data increases at a higher pace than the cost of compute power decreases, according to Moore's law. Consequently, data need to be selected systematically for analysis. In addition, analysis methods need to be as fast as possible while maintaining analytical accuracy. ... mehr


Volltext §
DOI: 10.5445/IR/1000184699
Veröffentlicht am 16.09.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Hochschulschrift
Publikationsdatum 16.09.2025
Sprache Englisch
Identifikator KITopen-ID: 1000184699
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xx, 159 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Theoretische Informatik (ITI)
Prüfungsdatum 29.07.2025
Schlagwörter Phylogenetics, Machine Learning, Data Science, Computational Biology
Nachgewiesen in OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und WohlergehenZiel 9 – Industrie, Innovation und InfrastrukturZiel 17 – Partnerschaften zur Erreichung der Ziele
Referent/Betreuer Stamatakis, Alexandros
Haeseler, Arndt von
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page