KIT | KIT-Bibliothek | Impressum | Datenschutz

A new T-compatibility condition and its application to the discretization of the damped time-harmonic Galbrun’s equation

Halla, Martin; Lehrenfeld, Christoph; Stocker, Paul

Abstract:

We consider the approximation of weakly T-coercive operators. The main property to ensure the convergence thereof is the regularity of the approximation (in the vocabulary of discrete approximation schemes). In a previous work the existence of discrete operators $T_{n}$, which converge to $T$ in a discrete norm, was shown to be sufficient to obtain regularity. Although this framework proved useful for many applications, for some instances the former assumption is too strong. Thus, in this article we report a weaker criterion for which the discrete operators $T_{n}$ only have to converge point-wise, but in addition a weak T-coercivity condition has to be satisfied on the discrete level. We apply the new framework to prove the convergence of certain $H<^>{1}$-conforming finite element discretizations of the damped time-harmonic Galbrun's equation, which is used to model the oscillations of stars. A main ingredient in the latter analysis is the uniformly stable invertibility of the divergence operator on certain spaces, which is related to the topic of stable discretizations of the Stokes equation.


Verlagsausgabe §
DOI: 10.5445/IR/1000184750
Veröffentlicht am 10.09.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0272-4979, 1464-3642
KITopen-ID: 1000184750
Erschienen in IMA Journal of Numerical Analysis
Verlag Oxford University Press (OUP)
Vorab online veröffentlicht am 30.08.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page