KIT | KIT-Bibliothek | Impressum | Datenschutz

Weighted finite difference methods for the semiclassical nonlinear Schrödinger equation with multiphase oscillatory initial data

Shi, Yanyan; Lubich, Christian

Abstract:

This paper introduces weighted finite difference methods for numerically solving dispersive evolution equations with solutions that are highly oscillatory in both space and time. We consider a semiclassically scaled cubic nonlinear Schrödinger equation with highly oscillatory initial data, first in the single-phase case and then in the general multiphase case. The proposed methods do not need to resolve high-frequency oscillations in both space and time by prohibitively fine grids as would be required by standard finite difference methods. The approach taken here modifies traditional finite difference methods by appropriate exponential weights. Specifically, we propose the weighted leapfrog and weighted Crank–Nicolson methods, both of which achieve second-order accuracy with time steps and mesh sizes that are not restricted in magnitude by the small semiclassical parameter. Numerical experiments illustrate the theoretical results.


Volltext §
DOI: 10.5445/IR/1000185810
Veröffentlicht am 20.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000185810
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 24 S.
Serie CRC 1173 Preprint ; 2025/48
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Forschungsdaten/Software
Abstract/Volltext
Schlagwörter finite difference method, cubic nonlinear Schrödinger equation, semiclassical scaling, highly oscillatory, modulated Fourier expansion, Wiener algebra, stability, error bound, asymptotic-preserving, uniformly accurate
Nachgewiesen in arXiv
OpenAlex
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 10 – Weniger UngleichheitenZiel 16 – Frieden, Gerechtigkeit und starke Institutionen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page