KIT | KIT-Bibliothek | Impressum | Datenschutz

Active learning for nonparametric multiscale modeling of boundary lubrication

Holey, Hannes ORCID iD icon 1; Gumbsch, Peter 1; Pastewka, Lars
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Lubricated friction is a multiscale problem where molecular processes dictate the macroscopic response of the system. Traditional lubrication models rely on semiempirical constitutive relations, which become unreliable under extreme conditions. Here, we present a simulation framework that seamlessly couples molecular and continuum models for boundary lubrication without fixed-form constitutive laws. We train Gaussian process regression models as surrogates for predicting interfacial shear and normal stress in molecular dynamics simulations. An active learning algorithm ensures that our model adapts in scenarios where common constitutive laws fail, such as at layering transitions. We demonstrate our approach for nanoscale fluid flow over rough and heterogeneous surfaces, paving the way for accurate boundary lubrication simulations at experimental length and timescales.


Verlagsausgabe §
DOI: 10.5445/IR/1000185959
Veröffentlicht am 21.10.2025
Originalveröffentlichung
DOI: 10.1126/sciadv.adx4546
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Zuverlässigkeit und Mikrostruktur (IAM-ZM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 12.09.2025
Sprache Englisch
Identifikator ISSN: 2375-2548
KITopen-ID: 1000185959
Erschienen in Science Advances
Verlag American Association for the Advancement of Science (AAAS)
Band 11
Heft 37
Seiten eadx4546
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 14 – Leben unter Wasser
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page