KIT | KIT-Bibliothek | Impressum | Datenschutz

Multi-site deep learning for groundwater level prediction across global datasets: toward scalable applications under data scarcity

Nolte, Annika ; Heudorfer, Benedikt 1,2; Bender, Steffen; Hartmann, Jens
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT)

Abstract:

Deep learning (DL), and especially long short-term memory (LSTM) networks, have shown strong potential for groundwater level (GWL) prediction, but remain limited across sites and at scale due to data scarcity and reliance on sparse, inconsistent, or physically ambiguous static site descriptors. This study advances prediction in three key ways. First, we present the first global, large-sample evaluation of multi-site LSTM models trained on over 1,800 wells across nine global regions and evaluate their performance under realistic data constraints. Second, we show that trainable site embeddings enable the model to learn site-specific behavior directly from time series without relying on externally defined site descriptors. Third, we analyze the embedding space, revealing emergent spatial and functional patterns that reflect hydrogeological structure. Embedding-based models achieve strong predictive performance in data-rich regions (median Nash-Sutcliffe efficiency (NSE) > 0.7) and remain robust across a combined global dataset. Our findings further challenge the assumption that larger datasets naturally improve predictions, especially in data-sparse regions. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186140
Veröffentlicht am 27.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Institut für Meteorologie und Klimaforschung (IMK)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.10.2025
Sprache Englisch
Identifikator ISSN: 1464-7141, 1465-1734
KITopen-ID: 1000186140
Erschienen in Journal of Hydroinformatics
Verlag IWA Publishing
Band 27
Heft 10
Seiten 1632–1651
Vorab online veröffentlicht am 24.09.2025
Nachgewiesen in Scopus
Web of Science
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page