KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimization-based framework for kernel parameter identification in multi-material population balance models

Ji, Haoran 1; Fuhrmann, Lena 1; Meza Gonzalez, Juan Fernando 1; Rhein, Frank ORCID iD icon 1
1 Institut für Mechanische Verfahrenstechnik und Mechanik (MVM), Karlsruher Institut für Technologie (KIT)

Abstract:

This study presents a robust, parallelized optimization framework for kernel parameter identification that is adaptable to any population balance equation (PBE) formulation and process type. The framework addresses the challenge of incomplete 2D particle size distribution (PSD) measurements in multi-material systems by combining a reduced 2D PSD with complementary 1D datasets. The framework was validated by using noisy synthetic PSD data and evaluating both the error in PSD and kernel values across eight kernel parameters. Hyperparameter and sensitivity analyses provided configuration recommendations and insights into the influence of individual parameters, thus guiding kernel model selection. Incorporating prior knowledge of one kernel parameter (e.g., through multi-scale simulations) mitigated non-unique solutions and enhanced noise tolerance, ultimately improving the framework’s robustness and reliability. A case study based on experimental data from a dispersion process demonstrated the framework’s flexibility and practical relevance.


Verlagsausgabe §
DOI: 10.5445/IR/1000186194
Veröffentlicht am 18.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mechanische Verfahrenstechnik und Mechanik (MVM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 2772-5081
KITopen-ID: 1000186194
Erschienen in Digital Chemical Engineering
Verlag Elsevier
Band 17
Seiten Art.-Nr. 100272
Nachgewiesen in OpenAlex
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 10 – Weniger Ungleichheiten
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page