KIT | KIT-Bibliothek | Impressum | Datenschutz

Stochastic Dual Dynamic Programming and Its Variants: A Review

Füllner, Christian ORCID iD icon 1; Rebennack, Steffen 2
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

We provide a tutorial-style review of stochastic dual dynamic programming (SDDP), one of the state-of-the-art solution methods for large-scale multistage stochastic programs. Since it was introduced about 30 years ago for solving large-scale multistage stochastic linear programming problems in energy planning, SDDP has been applied to practical problems from several fields and has been enriched by various improvements and enhancements to address broader problem classes. We begin with a detailed introduction to SDDP, with special focus on its motivation, complexity, and required assumptions. Then, we present and discuss in depth the existing enhancements as well as current research trends that allow for the alleviation of those assumptions.


Verlagsausgabe §
DOI: 10.5445/IR/1000186268
Veröffentlicht am 31.10.2025
Originalveröffentlichung
DOI: 10.1137/23M1575093
Scopus
Zitationen: 5
Web of Science
Zitationen: 1
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 07.08.2025
Sprache Englisch
Identifikator ISSN: 0036-1445, 1095-7200
KITopen-ID: 1000186268
Erschienen in SIAM Review
Verlag Society for Industrial and Applied Mathematics (SIAM)
Band 67
Heft 3
Seiten 415 – 539
Schlagwörter stochastic dual dynamic programming; dynamic programming; multistage stochastic programming; sequential decision problems; large-scale optimization; linear programming; nested Benders decomposition; sampling-based optimization; global optimization
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page