KIT | KIT-Bibliothek | Impressum | Datenschutz

Efficient data-driven model predictive control for online accelerator tuning

Xu, C.; Garcia, A. Santamaria ORCID iD icon 1; Kaiser, J.; Hespe, C.; Eichler, A.; Rodriguez Mateos, B.; Hirlaender, S.
1 Laboratorium für Applikationen der Synchrotronstrahlung (LAS), Karlsruher Institut für Technologie (KIT)

Abstract:

Reinforcement learning (RL) is a promising approach for the online control of complex, real-world systems, with recent success demonstrated in applications such as particle accelerator control. However, model-free RL algorithms often suffer from sample inefficiency, making training infeasible without access to high-fidelity simulations or extensive measurement data. This limitation poses a significant challenge for efficient real-world deployment. In this work, we explore data-driven model-predictive control (MPC) as a solution. Specifically, we employ Gaussian processes (GPs) to model the unknown transition functions in the real-world system, enabling safe exploration in the training process. We apply the GP-MPC framework to the transverse beam tuning task at the ARES accelerator, demonstrating its potential for efficient online training. This study showcases the feasibility of data-driven control strategies for accelerator applications, paving the way for more efficient and effective solutions in real-world scenarios.


Originalveröffentlichung
DOI: 10.18429/JACoW-IPAC2025-THPM116
Zugehörige Institution(en) am KIT Laboratorium für Applikationen der Synchrotronstrahlung (LAS)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 28.10.2025
Sprache Englisch
Identifikator ISBN: 978-3-9545024-8-6
ISSN: 2673-5490
KITopen-ID: 1000186391
HGF-Programm 54.11.11 (POF IV, LK 01) Accelerator Operation, Research and Development
Erschienen in Proceedings of the 16th International Particle Accelerator Conference, Taipei, 1st-6th June 2025
Veranstaltung 16th IPAC'25 - International Particle Accelerator Conference (IPAC 2025), Taipeh, Taiwan, 01.06.2025 – 06.06.2025
Verlag JACoW Publishing
Seiten 2931-2934
Serie IPAC’25 - 16th International Particle Accelerator Conference
Externe Relationen Siehe auch
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page