KIT | KIT-Bibliothek | Impressum | Datenschutz

Maxwell equations with localized internal damping: strong and polynomial stability

Nicaise, Serge ; Schnaubelt, Roland 1
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)

Abstract:

We study the Maxwell system with localized conductivity sigma and the boundary conditions of a perfect conductor on a simply connected domain Omega, assuming that there are no electric charges off the support of sigma. For matrix-valued permittivity epsilon and permeability mu, we show strong stability of the underlying semigroup by checking the spectral criteria of the Arendt-Batty-Lyubich-Vu Theorem. If epsilon = mu = 1, Omega is the cube (0, pi)3 and supp sigma contains a strip, the semigroup is polynomially stable of rate 2. To derive this result, we establish the resolvent estimate of the Borichev-Tomilov Theorem using an 1 orthonormal basis of eigenfunctions of the Maxwell operator for sigma = 0.


Verlagsausgabe §
DOI: 10.5445/IR/1000186459
Veröffentlicht am 04.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 10.10.2025
Sprache Englisch
Identifikator ISSN: 2836-3310
KITopen-ID: 1000186459
Erschienen in Communications in Analysis and Mechanics
Verlag AIMS Press
Band 17
Heft 4
Seiten 849–877
Nachgewiesen in Scopus
Web of Science
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page