KIT | KIT-Bibliothek | Impressum | Datenschutz

From Matrices to Operators: A Tensorial View on the Legendre Tau Method for Time-Delay Systems

Scholl, Tessina H. 1; Gröll, Lutz 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

It is the essence of numerical methods like the Legendre tau method to approximate infinite-dimensional problems by finite-dimensional ones. Instead of functions and operators, finite-dimensional vectors and matrices occur. However, such a vector or matrix is still the coordinate representation of a function or operator that approximates the original one. The present paper considers the coordinate representations that result from the Legendre tau method for time-delay systems. A combination of two different interpretations of the coordinates turns out to be particularly helpful: a coordinate vector can be seen as representing a polynomial of degree $N$ or as representing a polynomial of degree $N-1$ and a discontinuous end point. The fact that the associated basis functions are nonorthonormal in $L_2 \times \mathbb R^n$ must be dealt with. Tools from tensor algebra are used to make explicit the operators that are obtained as matrix representations from the Legendre tau method.


Verlagsausgabe §
DOI: 10.5445/IR/1000186564
Veröffentlicht am 07.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2405-8963
KITopen-ID: 1000186564
HGF-Programm 37.12.01 (POF IV, LK 01) Digitalization & System Technology for Flexibility Solutions
Erschienen in IFAC-PapersOnLine
Verlag International Federation of Automatic Control (IFAC)
Band 59
Heft 13
Seiten 99–104
Schlagwörter Legendre tau method, spectral methods, product space $M_2=L_2\times \mathbb R^m$, polynomials, tensor algebra, metric coefficients, operator equations
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page