KIT | KIT-Bibliothek | Impressum | Datenschutz

Uncertainty in Deep Learning: A Probabilistic Robotics Perspective

Lee, Jongseok 1,2
1 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)
2 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Robots are physical systems that perceive, plan, and act in the real world. As a consequence, their mistakes can not only cause failures in the robots' mission, but they can even endanger human lives, in the case of a robotic surgeon or a self-driving car, for example. This motivates probabilistic robotics, i.e., a paradigm of robotics with a set of methods that enable the robots to assess the uncertainty in their sensory data, used algorithms, learned predictors, etc., such that the robots can plan safe actions. One of the challenges herein is uncertainty quantification in the systems that rely on neural networks. For this, Bayesian statistics provide theoretical foundations. However, bringing Bayesian statistics to neural networks -- referred to as Bayesian Deep Learning -- involves the problem of (a) the choice of well-specified priors, (b) the inference of the posteriors, and (c) the uncertainty estimation through marginalization, which are active areas of research in machine learning and beyond.

For all these sub-problems of Bayesian Deep Learning, this work provides novel methodologies that are well-suited for their applications to robotics. ... mehr


Volltext §
DOI: 10.5445/IR/1000186907
Veröffentlicht am 14.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Hochschulschrift
Publikationsdatum 14.11.2025
Sprache Englisch
Identifikator KITopen-ID: 1000186907
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 296 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Anthropomatik und Robotik (IAR)
Prüfungsdatum 30.10.2025
Schlagwörter Uncertainty estimation, Deep Learning, Probabilistic robotics
Nachgewiesen in OpenAlex
Referent/Betreuer Triebel, Rudolph
Toussaint, Marc
Asfour, Tamim
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page