KIT | KIT-Bibliothek | Impressum | Datenschutz

Kolmogorov n-widths for linear dynamical systems

Unger, Benjamin ORCID iD icon; Gugercin, Serkan

Abstract:

Kolmogorov $n$-widths and Hankel singular values are two commonly used concepts in model reduction. Here we show that for the special case of linear time-invariant dynamical (LTI) systems, these two concepts are directly connected. More specifically, the greedy search applied to the Hankel operator of an LTI system resembles the minimizing subspace for the Kolmogorov n-width and the Kolmogorov $n$-width of an LTI system equals its $(n+1)st$ Hankel singular value once the subspaces are appropriately defined. We also establish a lower bound for the Kolmorogov $n$-width for parametric LTI systems and illustrate that the method of active subspaces can be viewed as the dual concept to the minimizing subspace for the Kolmogorov $n$-width.


Download
Originalveröffentlichung
DOI: 10.1007/s10444-019-09701-0
Scopus
Zitationen: 28
Web of Science
Zitationen: 30
Dimensions
Zitationen: 35
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2019
Sprache Englisch
Identifikator ISSN: 1019-7168, 1572-9044
KITopen-ID: 1000187450
Erschienen in Advances in Computational Mathematics
Verlag Springer
Band 45
Heft 5-6
Seiten 2273–2286
Vorab online veröffentlicht am 14.05.2019
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page