KIT | KIT-Bibliothek | Impressum | Datenschutz

AI4DiTraRe: Building the BFO-Compliant Chemotion Knowledge Graph

Norouzi, Ebrahim 1; Jung, Nicole ORCID iD icon 2; Jacyszyn, Anna M. 1; Waitelonis, Jörg 1; Sack, Harald 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)
2 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)

Abstract:

Chemistry is an example of a discipline where the advancements of technology have led to multi-level and often tangled and tricky processes ongoing in the lab. The repeatedly complex workflows are combined with information from chemical structures, which are essential to understand the scientific process. An important tool for many chemists is Chemotion, which consists of an electronic lab notebook and a repository. This paper introduces a semantic pipeline for constructing the BFO-compliant Chemotion Knowledge Graph, providing an integrated, ontology-driven representation of chemical research data. The Chemotion-KG has been developed to adhere to the FAIR (Findable, Accessible, Interoperable, Reusable) principles and to support AI-driven discovery and reasoning in chemistry. Experimental metadata were harvested from the Chemotion API in JSON-LD format, converted into RDF, and subsequently transformed into a Basic Formal Ontology-aligned graph through SPARQL CONSTRUCT queries. The source code and datasets are publicly available via GitHub. The Chemotion Knowledge Graph is hosted by FIZ Karlsruhe Information Service Engineering. Outcomes presented in this work were achieved within the Leibniz Science Campus ``Digital Transformation of Research'' (DiTraRe) and are part of an ongoing interdisciplinary collaboration.


Volltext §
DOI: 10.5445/IR/1000187574
Veröffentlicht am 26.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Institut für Biologische und Chemische Systeme (IBCS)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000187574
Verlag arxiv
Umfang 12 S.
Bemerkung zur Veröffentlichung 5th International Workshop on Scientific Knowledge: Representation, Discovery, and Assessment, Nov 2024, Nara, Japan.
Schlagwörter Information Retrieval (cs.IR)
Nachgewiesen in OpenAlex
arXiv
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page