KIT | KIT-Bibliothek | Impressum | Datenschutz

A semi-supervised learning-based framework for quantifying litter fluxes in river systems

Jia, Tianlong 1; Taormina, Riccardo; Vries, Rinze de; Kapelan, Zoran; van Emmerik, Tim H. M.; Vriend, Paul; Okkerman, Imke
1 Institut für Wasser und Umwelt (IWU), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Supervised deep learning methods have been widely employed to detect floating macroplastic litter (mm) in (fresh)water bodies. However, few studies used them to quantify floating litter fluxes in rivers with wide cross-sections, that is important for pollution assessment. Additionally, commonly used supervised learning (SL) models rely on extensive labeled data, that is time-consuming and expensive to obtain. Moreover, regardless of the model type, current deep learning models for litter detection usually fail to correctly identify small litter items. To overcome these issues, we propose a semi-supervised learning (SSL)-based framework combined with Slicing Aided Hyper Inference (SAHI) for quantifying cross-sectional floating litter fluxes in rivers. The framework includes four steps: (a) collecting camera images of river surfaces from multiple locations across the river, (b) developing a robust litter detection model using SSL, (c) applying this model with SAHI to detect litter items in images, and (d) post-processing the detection results to quantify fluxes. The SSL method involves: (i) self-supervised pre-training of a ResNet50 on a large amount of unlabeled data, and (ii) supervised fine-tuning of a Faster R-CNN with the ResNet50 backbone on a limited amount of labeled data. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000187949
Veröffentlicht am 03.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wasser und Umwelt (IWU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2026
Sprache Englisch
Identifikator ISSN: 0043-1354, 1879-2448
KITopen-ID: 1000187949
Erschienen in Water Research
Verlag Elsevier
Band 289
Seiten 124833
Schlagwörter Artificial intelligence, Object detection, Contrastive learning, SwAV, Macroplastic flux, Environmental monitoring, Pollution, Camera images
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page