KIT | KIT-Bibliothek | Impressum | Datenschutz

One particle - one qubit: Particle physics data encoding for quantum machine learning

Bal, Aritra ORCID iD icon 1; Klute, Markus 1; Maier, Benedikt; Oughton, Melik; Pezone, Eric; Spannowsky, Michael
1 Institut für Experimentelle Teilchenphysik (ETP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We introduce 1P1Q, a novel quantum data encoding scheme for high-energy physics (HEP), where each particle is assigned to an individual qubit, enabling direct representation of collision events on quantum circuits without classical compression. We demonstrate the effectiveness of 1P1Q in quantum machine learning (QML) through two applications: a quantum autoencoder (QAE) for unsupervised anomaly detection and a variational quantum circuit (VQC) for supervised classification of top quark jets. Our results show that the QAE successfully distinguishes signal jets from background quantum chromodynamics (QCD) jets, achieving superior performance compared to a classical autoencoder while utilizing significantly fewer trainable parameters. Similarly, the VQC achieves competitive classification performance, approaching state-of-the-art classical models despite its minimal computational complexity. Furthermore, we validate the QAE on real experimental data from the CMS detector, establishing the robustness of quantum algorithms in practical HEP applications. These results demonstrate that 1P1Q provides an effective and scalable quantum encoding strategy, offering new opportunities for applying quantum computing algorithms in collider data analysis.


Verlagsausgabe §
DOI: 10.5445/IR/1000187967
Veröffentlicht am 05.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Experimentelle Teilchenphysik (ETP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 2470-0010, 2470-0029
KITopen-ID: 1000187967
Erschienen in Physical Review D
Verlag American Physical Society (APS)
Band 112
Heft 7
Seiten 076004
Vorab online veröffentlicht am 06.10.2025
Schlagwörter Particle decays, Particle detection signatures, Particle interactions, Particle production, Quantum chromodynamics, Quantum circuits, Quantum computation, Quantum information processing, Quark & gluon jets, Artificial intelligence, Artificial neural networks, Machine learning
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page