KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards Scalable and Interaction-Efficient Video Object Segmentation in Unconstrained Scenarios

Vujasinovic, Stephane ORCID iD icon 1
1 Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (IOSB)

Abstract:

Video Object Segmentation (VOS) is a fundamental and challenging problem in Computer Vision (CV), where the goal is to delimit the spatial and temporal presence of a collection of objects in a given video sequence at pixel level.
Several approaches tackle VOS, namely automatic, semi-automatic, and interactive, each tailored to specific use cases and requirements.
Here, semi-automatic (sVOS) and interactive (iVOS) approaches provide the necessary flexibility to segment arbitrary objects by leveraging user cues (to various degrees), balancing automation and adaptability.


However, their applicability is predominantly limited to short, pre-recorded sequences due to their inherent design and the necessary user workload (e.g., reviewing and annotation effort). This bias makes sVOS and iVOS approaches impractical for unconstrained video segmentation (or tracking) applications. We consider a video sequence unconstrained when it is not pre-recorded (e.g., live-streamed), has no fixed length, and shows unpredictable content such as appearance changes, clutter, or occlusions.
In addition, the robustness of these models is inherently constrained by their training data.
... mehr


Volltext §
DOI: 10.5445/IR/1000188215
Veröffentlicht am 11.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Hochschulschrift
Publikationsdatum 11.12.2025
Sprache Englisch
Identifikator KITopen-ID: 1000188215
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xix, 124 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Anthropomatik und Robotik (IAR)
Prüfungsdatum 07.11.2025
Schlagwörter Computer Vision, Deep Learning, Video Object Segmentation, Visual Tracking, Interactive
Nachgewiesen in OpenAlex
Referent/Betreuer Stiefelhagen, Rainer
Kristan, Matej
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page