KIT | KIT-Bibliothek | Impressum | Datenschutz

Axiomatization of Compact Initial Value Problems: Open Properties

Platzer, André ORCID iD icon 1; Qian, Long
1 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract:

This article proves the completeness of an axiomatization for initial value problems (IVPs) with compact initial conditions and compact time horizons for bounded open safety, open liveness and existence properties. Completeness systematically reduces the proofs of these properties to a complete axiomatization for differential
equation invariants. This result unifies symbolic logic and numerical analysis by a computable procedure that generates symbolic proofs with differential invariants for rigorous error bounds of numerical solutions to polynomial initial value problems. The procedure is modular and works for all polynomial IVPs with rational coefficients and initial conditions and symbolic parameters constrained to compact sets. Furthermore, this article discusses generalizations to IVPs with initial conditions/symbolic parameters that are not necessarily constrained to compact sets, achieved through the derivation of fully symbolic axioms/proof-rules based on the axiomatization.


Verlagsausgabe §
DOI: 10.5445/IR/1000188295
Veröffentlicht am 10.12.2025
Originalveröffentlichung
DOI: 10.1145/3763228
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 31.12.2025
Sprache Englisch
Identifikator ISSN: 0004-5411, 1557-735X
KITopen-ID: 1000188295
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in Journal of the ACM
Verlag Association for Computing Machinery (ACM)
Band 72
Heft 6
Seiten 1–51
Vorab online veröffentlicht am 28.11.2025
Nachgewiesen in OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page